Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(11): e0187035, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29121060

RESUMO

Transmission of pathogens among animals is influenced by demographic, social, and environmental factors. Anthropogenic alteration of landscapes can impact patterns of disease dynamics in wildlife populations, increasing the potential for spillover and spread of emerging infectious diseases in wildlife, human, and domestic animal populations. We evaluated the effects of multiple ecological mechanisms on patterns of pathogen exposure in animal populations. Specifically, we evaluated how ecological factors affected the prevalence of Toxoplasma gondii (Toxoplasma), Bartonella spp. (Bartonella), feline immunodeficiency virus (FIV), and feline calicivirus (FCV) in bobcat and puma populations across wildland-urban interface (WUI), low-density exurban development, and wildland habitat on the Western Slope (WS) and Front Range (FR) of Colorado during 2009-2011. Samples were collected from 37 bobcats and 29 pumas on the WS and FR. As predicted, age appeared to be positively related to the exposure to pathogens that are both environmentally transmitted (Toxoplasma) and directly transmitted between animals (FIV). In addition, WS bobcats appeared more likely to be exposed to Toxoplasma with increasing intraspecific space-use overlap. However, counter to our predictions, exposure to directly-transmitted pathogens (FCV and FIV) was more likely with decreasing space-use overlap (FCV: WS bobcats) and potential intraspecific contacts (FIV: FR pumas). Environmental factors, including urbanization and landscape covariates, were generally unsupported in our models. This study is an approximation of how pathogens can be evaluated in relation to demographic, social, and environmental factors to understand pathogen exposure in wild animal populations.


Assuntos
Animais Selvagens/microbiologia , Animais Selvagens/virologia , Meio Ambiente , Felidae/microbiologia , Felidae/virologia , Comportamento Social , Urbanização , Animais , Animais Selvagens/parasitologia , Comportamento Animal , Colorado , Demografia , Felidae/parasitologia , Geografia , Lynx/microbiologia , Lynx/parasitologia , Lynx/virologia , Modelos Teóricos , Puma/microbiologia , Puma/parasitologia , Puma/virologia
2.
Ecol Appl ; 25(7): 1880-95, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591454

RESUMO

Urbanization is a primary driver of landscape conversion, with far-reaching effects on landscape pattern and process, particularly related to the population characteristics of animals. Urbanization can alter animal movement and habitat quality, both of which can influence population abundance and persistence. We evaluated three important population characteristics (population density, site occupancy, and species detection probability) of a medium-sized and a large carnivore across varying levels of urbanization. Specifically, we studied bobcat and puma populations across wildland, exurban development, and wildland-urban interface (WUI) sampling grids to test hypotheses evaluating how urbanization affects wild felid populations and their prey. Exurban development appeared to have a greater impact on felid populations than did habitat adjacent to a major urban area (i.e., WUI); estimates of population density for both bobcats and pumas were lower in areas of exurban development compared to wildland areas, whereas population density was similar between WUI and wildland habitat. Bobcats and pumas were less likely to be detected in habitat as the amount of human disturbance associated with residential development increased at a site, which was potentially related to reduced habitat quality resulting from urbanization. However, occupancy of both felids was similar between grids in both study areas, indicating that this population metric was less sensitive than density. At the scale of the sampling grid, detection probability for bobcats in urbanized habitat was greater than in wildland areas, potentially due to restrictive movement corridors and funneling of animal movements in landscapes influenced by urbanization. Occupancy of important felid prey (cottontail rabbits and mule deer) was similar across levels of urbanization, although elk occupancy was lower in urbanized areas. Our study indicates that the conservation of medium- and large-sized felids associated with urbanization likely will be most successful if large areas of wildland habitat are maintained, even in close proximity to urban areas, and wildland habitat is not converted to low-density residential development.


Assuntos
Lynx/fisiologia , Puma/fisiologia , Urbanização , Sistemas de Identificação Animal , Animais , Animais Selvagens , Colorado , Feminino , Masculino , Modelos Biológicos , Densidade Demográfica
3.
PLoS One ; 10(9): e0138915, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26398546

RESUMO

Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2-60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores.


Assuntos
Carnivoridade , Distribuição Animal , Animais , Análise por Conglomerados , Feminino , Sistemas de Informação Geográfica , Masculino , Puma , Melhoria de Qualidade
4.
J Anim Ecol ; 82(6): 1146-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23574332

RESUMO

1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error.


Assuntos
Ecologia/métodos , Ecossistema , Modelos Biológicos , Puma/fisiologia , Animais , Colorado , Telemetria
5.
Emerg Infect Dis ; 15(12): 2021-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19961691

RESUMO

Plague seroprevalence was estimated in populations of pumas and bobcats in the western United States. High levels of exposure in plague-endemic regions indicate the need to consider the ecology and pathobiology of plague in nondomestic felid hosts to better understand the role of these species in disease persistence and transmission.


Assuntos
Lynx/microbiologia , Peste/transmissão , Puma/microbiologia , Yersinia pestis/isolamento & purificação , Animais , Anticorpos Antibacterianos/sangue , Colorado , Reservatórios de Doenças , Humanos , Estudos Soroepidemiológicos , Yersinia pestis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA